Table of Contents |
---|
Key Points
...
AlphaCodium-ai-generate-activity-test-2024-gpt4
There's a new open-source, state-of-the-art code generation tool. It's a new approach that improves the performance of Large Language Models generating code.
The paper's authors call the process "AlphaCodium" and tested it on the CodeContests dataset, which contains around 10,000 competitive programming problems.
The results put AlphaCodium as the best approach to generate code we've seen. It beats DeepMind's AlphaCode and their new AlphaCode2 without needing to fine-tune a model!
I'm linking to the paper, the GitHub repository, and a blog post below, but let me give you a 10-second summary of how the process works:
Instead of using a single prompt to solve problems, AlphaCodium relies on an iterative process that repeatedly runs and fixes the generated code using the testing data.
1. The first step is to have the model reason about the problem. They describe it using bullet points and focus on the goal, inputs, outputs, rules, constraints, and any other relevant details.
2. Then, they make the model reason about the public tests and come up with an explanation of why the input leads to that particular output.
3. The model generates two to three potential solutions in text and ranks them in terms of correctness, simplicity, and robustness.
4. Then, it generates more diverse tests for the problem, covering cases not part of the original public tests.
5. Iteratively, pick a solution, generate the code, and run it on a few test cases. If the tests fail, improve the code and repeat the process until the code passes every test.
There's a lot more information in the paper and the blog post. Here are the links:
• Paper: https://lnkd.in/g9zkc_AK
• Blog: https://lnkd.in/g_wx88xj
• Code: https://lnkd.in/gJAxtgzn
https://github.com/Codium-ai/AlphaCodium
I attached an image comparing AlphaCodium with direct prompting using different models.
We tested AlphaCodium on a challenging code generation dataset called CodeContests, which includes competitive programming problems from platforms such as Codeforces. The proposed flow consistently and significantly improves results. On the validation set, for example, GPT-4 accuracy (pass@5) increased from 19% with a single well-designed direct prompt to 44% with the AlphaCodium flow.
Many of the principles and best practices we acquired in this work, we believe, are broadly applicable to general code generation tasks.
Azure AI Use Cases
ai-apps-use-cases-msft-azure-ebook-2024.pdf. link
AI apps employ machine learning to continually learn and adapt, using advanced models powered by cloud computing to optimize their results over time. The insights they provide are much more informative and actionable than their non-AI counterparts.
Compare Traditional to AI Apps
Traditional Apps | Intelligent Apps | Outcomes | |
Learning and automation | Depends on the code written by the programmer to perform a specific task | Programmed to learn to perform the task by using data, algorithms, computation, and method | Intelligent AI apps can adapt to changing situations and user preferences, while traditional apps are limited by predefined rules and logic |
Responsiveness | Can only respond to user inputs or requests | Can anticipate user needs and offer suggestions or solutions | Intelligent AI apps are proactive, making them more personalized and engaging than reactive traditional apps |
Data Capabilities | Designed only to handle certain types of data or inputs | Designed to handle various types of data or inputs and even generate new data or output | AI apps are flexible and creative, allowing users to engage beyond traditional app limitations in ways they didn’t expect |
Implementation | Typically built on a monolithic architecture and deployed on-premises | Built on the cloud using a microservices architecture | AI apps have enhanced scalability that lets them handle unlimited traffic and data |
Consulting Use Case
To maximize the collective knowledge of its consultants, Arthur D. Little created an internal solution that draws on text analytics and other AI enrichment capabilities in Azure AI services to improve indexing and deliver consolidated data insights. Using this solution, consultants have access to summaries of documents with the abstractive summarization feature in Azure AI Language. Unlike extractive summarization—which only extracts sentences with relevant information—abstractive summarization generates concise and coherent summaries, saving the consultants from scanning long documents for information.
1. Enhanced summarization capabilities speed up consultant workflows
2. Improved security and confidentiality
3. Rapid innovation for products and services
Synthesized Voice for Customer Service Use Case
TIM pioneers synthesized voice service to increase customer satisfaction
Azure AI Services
Azure provides a wide range of tools and services that support AI development:
- Azure OpenAI
Service Azure OpenAI Service provides access to powerful language models from OpenAI, such as GPT-4, GPT-3.5 Turbo, Codex, DALL-E, and Whisper, that perform tasks such as content generation, summarization, semantic search, and natural language to code translation. Enterprises use this service to improve digital customer experience by adding chatbot/generative AI capabilities to customer-facing solutions with Azure AI services and Azure OpenAI. - Azure AI Search
Azure AI Search lets enterprises build rich search experiences over their private and heterogeneous data sources in web, mobile, and enterprise applications. Azure AI Search utilizes advanced deep-learning models to provide contextual and relevant results. It also supports features such as semantic search, knowledge mining, summary results, faceting, suggestions, synonyms, geo-search, and more. - Azure AI services
Azure AI services is a suite of out-of-the-box and customizable AI tools, APIs, and models that help modernize business processes faster. Azure AI services include services for vision, speech, language, decision, metrics advisor, immersive reader, and more. Enterprises use these services to build intelligent applications that automate document processing, improve customer service, understand the root cause of anomalies, and extract insights from content. - Azure Kubernetes Service
Azure Kubernetes Service simplifies deploying managed Kubernetes clusters in Azure by offloading the operational overhead to Azure. Kubernetes is a popular open-source platform for orchestrating containers that run applications. Enterprises use AKS to run their containerized applications at scale with high availability and performance. - Azure Cosmos DB
Azure Cosmos DB is a globally distributed, multi-model database service that offers single-digit millisecond response times, automatic and instant scalability, and guaranteed speed at any scale. Azure Cosmos DB supports multiple data models including document, key-value, graph, and column-family data. It also supports multiple APIs, such as native NoSQL, MongoDB API, PostgreSQL API, Apache Cassandra API, and more. Enterprises use Azure Cosmos DB to store and query their data in the most suitable model and API for their application needs
Potential Challenges
Candidate Solutions
...